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Time series classification

Machine learning for time series

• Time series data is unstructured −→ not suited as raw input to standard
machine learning classifiers (e.g., logistic regression).

• Two main approaches: feature-based and metric-based approaches.

• Feature-based methods:

▶ Independent process: Running the feature extraction process before fitting
the classifier on the extracted features.

▶ Incorporated process: Including the feature extraction process in the
classifier (e.g., neural networks with several layers).

• Metric-based methods: Adapting existing machine learning classifiers to
time series data (e.g., with specific metrics for nearest-neighbor methods
and specific kernels for kernel methods).
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Time series classification

Literature overview

• Not an exhaustive literature review.

• Highlight the main algorithms and the variety of methods.

• Time series are assumed to be univariate (a real number at each
timestamp) and not multivariate (a real-valued vector at each
timestamps, e.g. (latitude, longitude) pairs for GPS coordinates).
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Time series classification Metric-based approaches

Limitations of the Euclidean distance

• Simple example from speech recognition:

▶ Two audio recordings of the same person pronouncing the same sentence
but at different speech rates.

▶ Expectations: a relevant metric should return a low value (i.e., both time
series are similar).

• Two time series X = (x1, . . . , xn) ∈ Rn and Y = (y1, . . . , ym) ∈ Rm

• Limitations of the Euclidean distance for time series:

(∑
i

(xi − yi)
2

)1/2

▶ Independent comparison (squared difference) in each dimension

▶ Not defined for two vectors of different sizes
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Time series classification Metric-based approaches

Global alignment
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Time series classification Metric-based approaches

Dynamic time warping

• Local divergence: function that measures closeness between two
values, e.g.:

∀x, y ∈ R, f(x, y) = (x− y)2

• Cost matrix: evaluation of the local divergence for every pair (xi, yj)

∀i, j ∈ {1, . . . , n} × {1, . . . ,m}, Cij = f(xi, yj)

• Warping path: sequence p = (p1, . . . , pL) such that:

▶ value condition: ∀l ∈ {1, . . . , L}, pl = (il, jl) ∈ {1, . . . , n} × {1, . . . ,m}

▶ boundary condition: p1 = (1, 1) and pL = (n,m)

▶ step condition: ∀l ∈ {1, . . . , L− 1}, pl+1 − pl ∈ {(0, 1) , (1, 0) , (1, 1)}
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Time series classification Metric-based approaches

Dynamic time warping
• Cost associated with a warping path:

Cp (X,Y ) =

L∑
l=1

Cil,jl

• Dynamic time warping [SC78]: minimum
cost among all the possible warping
paths:

DTW (X,Y ) = min
p∈P

Cp (X,Y )

• Computed using dynamic programming:

DTW (X:i, Y:j) = Ci,j +min{DTW (X:i−1, Y:j−1)

DTW (X:i−1, Y:j)

DTW (X:i, Y:j−1)}
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Time series classification Metric-based approaches

Limitations of dynamic time warping

• High complexity: O(nm) for two time series of sizes n and m.

• (Possibly too) large time warps.

• Not a distance: separation property and triangle inequality not
satisfied) −→ no efficient nearest-neighbor search algorithm.
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Time series classification Metric-based approaches

Constraint regions

• Idea: Limit the possible values in a warping path.

•
Pros Cons

Decrease maximum time warp May not retrieve the optimal path

Decrease computational complexity Hyperparameter

• A constraint region may depend on the values of both time series.

▶ Series-independent constraint regions: Sakoe-Chiba band [SC78], Itakura
parallelogram [Ita75].

▶ Series-dependent constraint regions: Multiscale-DTW [MMK06], FastDTW
[SC07].
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Time series classification Metric-based approaches

Dynamic time warping (with constraint regions)
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Time series classification Metric-based approaches

Global alignment kernel

• Dynamic time warping cannot be used to define a positive definite kernel
since it does not satisfy the triangle inequality.

• Global alignment kernel [Cut11]:

kγGA(x, y) =
∑
p∈P

exp (−Cp(x, y)/γ)

• kγGA is a positive definite kernel under mild conditions.

• Soft dynamic time warping [CB17] (differentiable loss function):

soft-dtwγ = −γ log kγGA
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Time series classification Feature-based approaches
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Time series classification Feature-based approaches

Shapelet-based algorithms

• Idea: Some small sequences of consecutive values may be specific to
certain classes.

• Shapelet: real-valued vector of size l ≤ n (n being the size of the time
series).

• “Distance” between a time series X = (x1, . . . , xn) and a shapelet
S = (s1, . . . , sl):

d(X,S) = min
j∈{0,...,n−l}

l∑
i=1

(xi+j − si)
2

• Algorithms: Shapelet transform [Lin+12], Learning shapelets [Gra+14].
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Time series classification Feature-based approaches

Learning shapelets
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Time series classification Feature-based approaches

Dictionary-based approaches

• Idea: transform a time series into a bag of words.

• General algorithm:
1 Extract subsequences using a sliding window.

2 Transform each subsequence into a word.
3 Perform classification based on the word frequencies.

• Algorithms: Bag-of-Patterns [LKL12], SAXVSM [SM13], BOSS [Sch15],
BOSSVS [Sch16], WEASEL [SL17]. . .

• Two main methods to transform a subsequence into a word:

▶ discretization of (standardized) values: SAX [Lin+07]

▶ discretization of Fourier coefficient: SFA [SH12]
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Time series classification Feature-based approaches

Symbolic Aggregate approXimation (SAX)
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Time series classification Feature-based approaches

Symbolic Fourier Approximation (SFA)
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Time series classification Feature-based approaches

Imaging time series

• Old concept (for visualizing dynamic systems).

• Motivated by breakthroughs in computer vision (convolutional neural
networks).

• Algorithms: Recurrence plot [EKR87], Gramian angular field [WO15],
Markov transition field [WO15].
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Time series classification Feature-based approaches

Imaging time series: recurrence plots

x⃗i = (xi, xi+τ , . . . , xi+(m−1)τ )

Rij = 1 (∥x⃗i − x⃗j∥2 < ε)

Rij = ∥x⃗i − x⃗j∥2
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Time series classification Feature-based approaches

Imaging time series: Gramian angular fields

x̃i = −1 + 2
xi −min(x)

max(x)−min(x)

ϕi = arccos(x̃i)

GASFi,j = cos(ϕi + ϕj)

GADFi,j = sin(ϕi − ϕj)
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Time series classification Feature-based approaches

Imaging time series: Markov transition fields
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Time series classification Feature-based approaches

Tree-based algorithms

• Motivated by the success of the random forest and extremely
randomized trees algorithms.

• Two main approaches:

▶ Extract features that are then used to fit a standard tree-based algorithm.

▶ Modify the tree building process to make use of the different metrics for
time series published in the literature.

• Algorithms: Time series forest [Den+13], time series bag-of-features
[BRT13], Proximity forest [Luc+19].
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Time series classification Feature-based approaches

Tree-based algorithms: Time series forest
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Time series classification Feature-based approaches

Neural networks: InceptionTime [Ism+20]
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Time series classification Feature-based approaches

Random convolutional kernels

• Generating random convolutional kernels instead of learning them.

• Different aggregated features computed from each feature map from
usual global average/max pooling:

▶ proportion of positive values

▶ longest period of consecutive positive values

• Ridge classifier fitted on these extracted features.

• Algorithms: ROCKET [DPW20], MiniROCKET [DSW21], MultiROCKET
[Tan+21].
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Time series classification Feature-based approaches

Ensemble models

• Ensemble of several models (different algorithms, same algorithms with
different hyperparameters).

• State-of-the-art in terms of predictive performance only, but very high
algorithmic complexity.

• Algorithms: COTE [Bag+15], HIVE-COTE [LTB18; Bag+20; Mid+21],
TS-CHIEF [Shi+20].
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Time series classification Feature-based approaches

Time Series Classification Archive

• Website: http://timeseriesclassification.com

• Over 100 univariate (and 30 multivariate) time series classification
datasets.

• Benchmark results for many algorithms.
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Time series classification Feature-based approaches

Conclusion

• Many papers describing new algorithms dedicated to time series
classification have been published in the literature, with a wide variety of
approaches being investigated.

• Concrete application:

▶ One wants to tackle a real-world use case which is formulated as a time
series classification task.

▶ What are their possibilities?
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Managing your project as a software

Barriers to work on a real-world application

• Investigate several algorithms to see what works best.

• Possible issues with source code:

▶ Not available.

▶ Written in different programming languages (Java, MATLAB, Python, R,
etc.).

▶ Provided commands only aiming at reproducing the results on some
given datasets.

▶ Barely commented and not easily extendable.

▶ Barely documented.
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Managing your project as a software

Replication crisis

• Little incentive to publish the source code associated to a paper (until
recently).

• Source code rarely peer reviewed (until recently).

• Yet, all the experiments, thus the results and conclusions, rely on
the source code.
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Managing your project as a software

Source code - different levels of usability

• Code availability: Easily accessing the source code of a project.

• Reproducibility: Reproducing (almost) the same experiments and
obtaining (almost) the same results (hardware, float precision, etc.).

• Replicability: Slightly modifying the experiments (different dataset,
different use case) and obtaining “good” results.

• Reusability: Easily integrating the tools made available in one project in
another project.
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Managing your project as a software

Objective

• Present the notions and tools that make producing
reusable code easier.

• Advocate for managing your project as a software.
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Managing your project as a software

Version control

• Problem: Updating the source code of a software may quickly become a
mess because of multiple versions of the same software at any given
time:

▶ Remote version

▶ Local version for each developer

• Version control: Tracking and providing control over changes to source
code.

• Distributed version control: The complete codebase, including its full
history, is mirrored on every developer’s computer, enabling automatic
management branching and merging.

• Tools:

▶ git

▶ Mercurial
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Managing your project as a software

Hosting your source code

• GitHub

• GitLab

• Bitbucket

• SourceForge
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Managing your project as a software

Hosting your (Python) package

• Some programming languages (e.g., Python, R, TeX) have an official
archive to upload and download packages.

• PyPI: Python Package Index

▶ Over 330 thousand projects

▶ Over 3 million releases

▶ Over 500k users

pip install pyts

conda install -c conda-forge pyts

• conda: package, dependency and environment management:

▶ Limitation: Only a few packages are available in the default channel;
anyone can create their own channel to host their packages (but this has
several disadvantages).

▶ conda-forge is a community effort that provides conda packages for a wide
range of software in a single channel.
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Managing your project as a software

Semantic versioning

• Website: https://semver.org

• Summary:

Given a version number MAJOR.MINOR.PATCH, increment the:

▶ MAJOR version when you make incompatible API changes,

▶ MINOR version when you add functionality in a backwards compatible
manner, and

▶ PATCH version when you make backwards compatible bug fixes.

Additional labels for pre-release and build metadata are available as
extensions to the MAJOR.MINOR.PATCH format.
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Managing your project as a software

Linting

• Definition: Process of checking the source code for programmatic and
stylistic errors.

• Examples of stylistic errors:

▶ Lines too long

▶ Defining variables that are never used

▶ Missing (or too many) whitespaces (or blank lines)

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 41 / 63



Managing your project as a software

Linting in Python

• Mainly defined by two Python Enhancement Proposals (PEP):

▶ PEP 8: Style Guide for Python Code

▶ PEP 257: Docstring Conventions

• Main Python package: flake8

▶ flake8 itself does not implement checks but builds a strong foundation for a
plugin ecosystem.

▶ Popular plugins:
⋆ pyflakes: checks Python code for errors.

⋆ pycodestyle: checks Python code against some PEP 8 style conventions.

⋆ mccabe: checks McCabe complexity using Ned’s script.

⋆ pep8-naming: checks Python code against PEP 8 naming conventions.

⋆ flake8-docstrings: is an extension for pydocstyle to flake8.
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Managing your project as a software

Code style (in Python)

• Even when abiding by PEP 8 style conventions, there are still many
ways to write the same piece of code.

• Black: The uncompromising code formatter:

▶ Blackened code looks the same regardless of the project you’re reading.

▶ Formatting becomes transparent after a while and you can focus on the
content instead.

▶ Black makes code review faster by producing the smallest diffs possible.
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Managing your project as a software

Testing

• Would you state a new theorem without giving its proof?

• Would you apply a theorem without checking if the hypotheses are
satisfied?

• Would you trust anyone’s code (including yours) without it being tested?
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Managing your project as a software

Testing

Objective: Testing that your code works and does what it is supposed to
do.

• Unit testing: Testing individual modules of an application in isolation to
confirm that the code is doing things right.

• Integration testing: Checking if different submodules of your project are
working fine when combined together.

• Functional testing: Testing a functionality in the project (may interact
with dependencies) to confirm that the code is doing the right things.

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 45 / 63



Managing your project as a software

Testing in Python

• unittest: Python package from the standard library.

• nose: deprecated Python package.

• pytest: the most popular Python package (easier, more flexible).
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Managing your project as a software

Code coverage

• Definition: a measure used to describe the degree to which the source
code of a program is executed when a particular test suite is run.

• Common metric: percentage of lines that have been executed at least
once. Available at any level:

▶ in the whole module,

▶ in any submodule,

▶ in any file.

• Reliant on the report of the testing tool used to run the test suite.
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Managing your project as a software

Code coverage in Python

• coverage: general tool (initially developed to be used with unittest).

• pytest-cov: plugin for pytest.
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Managing your project as a software

Code coverage (online)

• Reporting the code coverage results online has several upsides:

▶ Information easily available to anyone (no need to run a command)

▶ User-friendly report (sunburst graph, code coverage at any level, etc.)

▶ Can be included in the continuous integration pipeline (e.g., monitoring
the change in code coverage in a pull request)

• Available tools:

▶ Codecov

▶ Coveralls
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Managing your project as a software

Documentation

• A software (and more generally any source code) without its
corresponding documentation is almost useless.

• Key elements of any documentation:

▶ Installation instructions

▶ User guide

▶ API documentation

▶ Examples

• Other useful elements: getting started, tutorials, changelog, glossary,
developer guide, etc.
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Managing your project as a software

Documentation in Python

• Sphinx: Python documentation generator

▶ Originally created for the Python documentation

▶ Expanded to other programming languages (C, PHP, Ruby, JavaScript, etc.)

▶ Many useful extensions, including:
⋆ sphinx.ext.autodoc: Include documentation from docstrings

⋆ sphinx.ext.autodoc: Generate autodoc summaries

⋆ sphinx.ext.viewcode: Add links to highlighted source code

⋆ sphinx.ext.doctest: Test snippets in the documentation

⋆ sphinx_gallery: Build an HTML gallery of examples from any set of Python
scripts

• MkDocs: project documentation with Markdown
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Managing your project as a software

Documentation (online)

• A website dedicated to the documentation is much more user-friendly
than a PDF file with hundreds or even thousands of pages.

• ReadTheDocs: Simplify software documentation by automating building,
versioning, and hosting of your docs for you.

• GitHub Pages: Websites for you and your projects.

▶ Hosted directly from your GitHub repository.

▶ Just edit, push, and your changes are live.

• Automatically redirect to another website if you own a dedicated domain.
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Managing your project as a software

Continuous integration

• Rationale: Making sure that any version of the remote source code
always works.

• Content: linting, testing, code coverage, documentation, etc.

• Workflow: Before changing the remote source code:
1 Run the continuous integration locally.

2 Run the continuous integration remotely (several operating systems, several
versions of dependencies, etc.).

3 If successful, the changes can be merged.
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Managing your project as a software

Continuous integration (online)

Many services available, all of them being free for open source projects (with
reasonable restrictions), including:

• Azure Pipelines

• GitHub workflows

• Travis CI

• CircleCI

• AppVeyor

• Jenkins
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pyts: A Python Package for Time Series Classification

What is pyts?

• Python package dedicated to time series classification.

• Objective: Make working on time series classification easy:

▶ Data loading utilities, preprocessing tools, implementations of many
algorithms,

▶ Under a unified application programming interface,

▶ Compatible with scikit-learn tools such as cross-validation and
pipelines.

• Published in the Open Source Section of Journal of Machine Learning
Research in 2020 [FJ20].
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pyts: A Python Package for Time Series Classification

Concrete example

Let’s see how the tools presented in the second
section are applied in this package.
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pyts: A Python Package for Time Series Classification

Thanks

Thank you for your attention
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pyts: A Python Package for Time Series Classification
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