
Time Series Classification in Python

Johann Faouzi

Postdoctoral researcher

Aramis project-team, Paris Brain Institute, Inria, Sorbonne Université, CNRS, Inserm

Signal, Statistics and Learning Seminar

March 17, 2022

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 1 / 63



Outline

1 Time series classification
Metric-based approaches
Feature-based approaches

2 Managing your project as a software

3 pyts: A Python Package for Time Series Classification

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 2 / 63



Time series classification

Outline

1 Time series classification
Metric-based approaches
Feature-based approaches

2 Managing your project as a software

3 pyts: A Python Package for Time Series Classification

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 3 / 63



Time series classification

Machine learning for time series

• Time series data is unstructured −→ not suited as raw input to standard
machine learning classifiers (e.g., logistic regression).

• Two main approaches: feature-based and metric-based approaches.

• Feature-based methods:

▶ Independent process: Running the feature extraction process before fitting
the classifier on the extracted features.

▶ Incorporated process: Including the feature extraction process in the
classifier (e.g., neural networks with several layers).

• Metric-based methods: Adapting existing machine learning classifiers to
time series data (e.g., with specific metrics for nearest-neighbor methods
and specific kernels for kernel methods).

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 4 / 63



Time series classification

Literature overview

• Not an exhaustive literature review.

• Highlight the main algorithms and the variety of methods.

• Time series are assumed to be univariate (a real number at each
timestamp) and not multivariate (a real-valued vector at each
timestamps, e.g. (latitude, longitude) pairs for GPS coordinates).

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 5 / 63



Time series classification Metric-based approaches

Outline

1 Time series classification
Metric-based approaches
Feature-based approaches

2 Managing your project as a software

3 pyts: A Python Package for Time Series Classification

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 6 / 63



Time series classification Metric-based approaches

Limitations of the Euclidean distance

• Simple example from speech recognition:

▶ Two audio recordings of the same person pronouncing the same sentence
but at different speech rates.

▶ Expectations: a relevant metric should return a low value (i.e., both time
series are similar).

• Two time series X = (x1, . . . , xn) ∈ Rn and Y = (y1, . . . , ym) ∈ Rm

• Limitations of the Euclidean distance for time series:

(∑
i

(xi − yi)
2

)1/2

▶ Independent comparison (squared difference) in each dimension

▶ Not defined for two vectors of different sizes

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 7 / 63



Time series classification Metric-based approaches

Global alignment

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 8 / 63



Time series classification Metric-based approaches

Dynamic time warping

• Local divergence: function that measures closeness between two
values, e.g.:

∀x, y ∈ R, f(x, y) = (x− y)2

• Cost matrix: evaluation of the local divergence for every pair (xi, yj)

∀i, j ∈ {1, . . . , n} × {1, . . . ,m}, Cij = f(xi, yj)

• Warping path: sequence p = (p1, . . . , pL) such that:

▶ value condition: ∀l ∈ {1, . . . , L}, pl = (il, jl) ∈ {1, . . . , n} × {1, . . . ,m}

▶ boundary condition: p1 = (1, 1) and pL = (n,m)

▶ step condition: ∀l ∈ {1, . . . , L− 1}, pl+1 − pl ∈ {(0, 1) , (1, 0) , (1, 1)}

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 9 / 63



Time series classification Metric-based approaches

Dynamic time warping
• Cost associated with a warping path:

Cp (X,Y ) =

L∑
l=1

Cil,jl

• Dynamic time warping [SC78]: minimum
cost among all the possible warping
paths:

DTW (X,Y ) = min
p∈P

Cp (X,Y )

• Computed using dynamic programming:

DTW (X:i, Y:j) = Ci,j +min{DTW (X:i−1, Y:j−1)

DTW (X:i−1, Y:j)

DTW (X:i, Y:j−1)}

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 10 / 63



Time series classification Metric-based approaches

Limitations of dynamic time warping

• High complexity: O(nm) for two time series of sizes n and m.

• (Possibly too) large time warps.

• Not a distance: separation property and triangle inequality not
satisfied) −→ no efficient nearest-neighbor search algorithm.

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 11 / 63



Time series classification Metric-based approaches

Constraint regions

• Idea: Limit the possible values in a warping path.

•
Pros Cons

Decrease maximum time warp May not retrieve the optimal path

Decrease computational complexity Hyperparameter

• A constraint region may depend on the values of both time series.

▶ Series-independent constraint regions: Sakoe-Chiba band [SC78], Itakura
parallelogram [Ita75].

▶ Series-dependent constraint regions: Multiscale-DTW [MMK06], FastDTW
[SC07].

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 12 / 63



Time series classification Metric-based approaches

Dynamic time warping (with constraint regions)

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 13 / 63



Time series classification Metric-based approaches

Global alignment kernel

• Dynamic time warping cannot be used to define a positive definite kernel
since it does not satisfy the triangle inequality.

• Global alignment kernel [Cut11]:

kγGA(x, y) =
∑
p∈P

exp (−Cp(x, y)/γ)

• kγGA is a positive definite kernel under mild conditions.

• Soft dynamic time warping [CB17] (differentiable loss function):

soft-dtwγ = −γ log kγGA

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 14 / 63



Time series classification Feature-based approaches

Outline

1 Time series classification
Metric-based approaches
Feature-based approaches

2 Managing your project as a software

3 pyts: A Python Package for Time Series Classification

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 15 / 63



Time series classification Feature-based approaches

Shapelet-based algorithms

• Idea: Some small sequences of consecutive values may be specific to
certain classes.

• Shapelet: real-valued vector of size l ≤ n (n being the size of the time
series).

• “Distance” between a time series X = (x1, . . . , xn) and a shapelet
S = (s1, . . . , sl):

d(X,S) = min
j∈{0,...,n−l}

l∑
i=1

(xi+j − si)
2

• Algorithms: Shapelet transform [Lin+12], Learning shapelets [Gra+14].

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 16 / 63



Time series classification Feature-based approaches

Learning shapelets

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 17 / 63



Time series classification Feature-based approaches

Dictionary-based approaches

• Idea: transform a time series into a bag of words.

• General algorithm:
1 Extract subsequences using a sliding window.

2 Transform each subsequence into a word.
3 Perform classification based on the word frequencies.

• Algorithms: Bag-of-Patterns [LKL12], SAXVSM [SM13], BOSS [Sch15],
BOSSVS [Sch16], WEASEL [SL17]. . .

• Two main methods to transform a subsequence into a word:

▶ discretization of (standardized) values: SAX [Lin+07]

▶ discretization of Fourier coefficient: SFA [SH12]

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 18 / 63



Time series classification Feature-based approaches

Symbolic Aggregate approXimation (SAX)

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 19 / 63



Time series classification Feature-based approaches

Symbolic Fourier Approximation (SFA)

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 20 / 63



Time series classification Feature-based approaches

Imaging time series

• Old concept (for visualizing dynamic systems).

• Motivated by breakthroughs in computer vision (convolutional neural
networks).

• Algorithms: Recurrence plot [EKR87], Gramian angular field [WO15],
Markov transition field [WO15].

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 21 / 63



Time series classification Feature-based approaches

Imaging time series: recurrence plots

x⃗i = (xi, xi+τ , . . . , xi+(m−1)τ )

Rij = 1 (∥x⃗i − x⃗j∥2 < ε)

Rij = ∥x⃗i − x⃗j∥2

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 22 / 63



Time series classification Feature-based approaches

Imaging time series: Gramian angular fields

x̃i = −1 + 2
xi −min(x)

max(x)−min(x)

ϕi = arccos(x̃i)

GASFi,j = cos(ϕi + ϕj)

GADFi,j = sin(ϕi − ϕj)

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 23 / 63



Time series classification Feature-based approaches

Imaging time series: Markov transition fields

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 24 / 63



Time series classification Feature-based approaches

Tree-based algorithms

• Motivated by the success of the random forest and extremely
randomized trees algorithms.

• Two main approaches:

▶ Extract features that are then used to fit a standard tree-based algorithm.

▶ Modify the tree building process to make use of the different metrics for
time series published in the literature.

• Algorithms: Time series forest [Den+13], time series bag-of-features
[BRT13], Proximity forest [Luc+19].

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 25 / 63



Time series classification Feature-based approaches

Tree-based algorithms: Time series forest

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 26 / 63



Time series classification Feature-based approaches

Neural networks: InceptionTime [Ism+20]

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 27 / 63



Time series classification Feature-based approaches

Random convolutional kernels

• Generating random convolutional kernels instead of learning them.

• Different aggregated features computed from each feature map from
usual global average/max pooling:

▶ proportion of positive values

▶ longest period of consecutive positive values

• Ridge classifier fitted on these extracted features.

• Algorithms: ROCKET [DPW20], MiniROCKET [DSW21], MultiROCKET
[Tan+21].

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 28 / 63



Time series classification Feature-based approaches

Ensemble models

• Ensemble of several models (different algorithms, same algorithms with
different hyperparameters).

• State-of-the-art in terms of predictive performance only, but very high
algorithmic complexity.

• Algorithms: COTE [Bag+15], HIVE-COTE [LTB18; Bag+20; Mid+21],
TS-CHIEF [Shi+20].

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 29 / 63



Time series classification Feature-based approaches

Time Series Classification Archive

• Website: http://timeseriesclassification.com

• Over 100 univariate (and 30 multivariate) time series classification
datasets.

• Benchmark results for many algorithms.

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 30 / 63

http://timeseriesclassification.com


Time series classification Feature-based approaches

Conclusion

• Many papers describing new algorithms dedicated to time series
classification have been published in the literature, with a wide variety of
approaches being investigated.

• Concrete application:

▶ One wants to tackle a real-world use case which is formulated as a time
series classification task.

▶ What are their possibilities?

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 31 / 63



Managing your project as a software

Outline

1 Time series classification
Metric-based approaches
Feature-based approaches

2 Managing your project as a software

3 pyts: A Python Package for Time Series Classification

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 32 / 63



Managing your project as a software

Barriers to work on a real-world application

• Investigate several algorithms to see what works best.

• Possible issues with source code:

▶ Not available.

▶ Written in different programming languages (Java, MATLAB, Python, R,
etc.).

▶ Provided commands only aiming at reproducing the results on some
given datasets.

▶ Barely commented and not easily extendable.

▶ Barely documented.

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 33 / 63



Managing your project as a software

Replication crisis

• Little incentive to publish the source code associated to a paper (until
recently).

• Source code rarely peer reviewed (until recently).

• Yet, all the experiments, thus the results and conclusions, rely on
the source code.

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 34 / 63



Managing your project as a software

Source code - different levels of usability

• Code availability: Easily accessing the source code of a project.

• Reproducibility: Reproducing (almost) the same experiments and
obtaining (almost) the same results (hardware, float precision, etc.).

• Replicability: Slightly modifying the experiments (different dataset,
different use case) and obtaining “good” results.

• Reusability: Easily integrating the tools made available in one project in
another project.

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 35 / 63



Managing your project as a software

Objective

• Present the notions and tools that make producing
reusable code easier.

• Advocate for managing your project as a software.

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 36 / 63



Managing your project as a software

Version control

• Problem: Updating the source code of a software may quickly become a
mess because of multiple versions of the same software at any given
time:

▶ Remote version

▶ Local version for each developer

• Version control: Tracking and providing control over changes to source
code.

• Distributed version control: The complete codebase, including its full
history, is mirrored on every developer’s computer, enabling automatic
management branching and merging.

• Tools:

▶ git

▶ Mercurial

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 37 / 63

https://git-scm.com
https://www.mercurial-scm.org


Managing your project as a software

Hosting your source code

• GitHub

• GitLab

• Bitbucket

• SourceForge

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 38 / 63

https://github.com/about
https://about.gitlab.com
https://bitbucket.org
https://sourceforge.net


Managing your project as a software

Hosting your (Python) package

• Some programming languages (e.g., Python, R, TeX) have an official
archive to upload and download packages.

• PyPI: Python Package Index

▶ Over 330 thousand projects

▶ Over 3 million releases

▶ Over 500k users

pip install pyts

conda install -c conda-forge pyts

• conda: package, dependency and environment management:

▶ Limitation: Only a few packages are available in the default channel;
anyone can create their own channel to host their packages (but this has
several disadvantages).

▶ conda-forge is a community effort that provides conda packages for a wide
range of software in a single channel.

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 39 / 63

https://pypi.org
https://docs.conda.io/en/latest/
https://conda-forge.org


Managing your project as a software

Semantic versioning

• Website: https://semver.org

• Summary:

Given a version number MAJOR.MINOR.PATCH, increment the:

▶ MAJOR version when you make incompatible API changes,

▶ MINOR version when you add functionality in a backwards compatible
manner, and

▶ PATCH version when you make backwards compatible bug fixes.

Additional labels for pre-release and build metadata are available as
extensions to the MAJOR.MINOR.PATCH format.

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 40 / 63

https://semver.org


Managing your project as a software

Linting

• Definition: Process of checking the source code for programmatic and
stylistic errors.

• Examples of stylistic errors:

▶ Lines too long

▶ Defining variables that are never used

▶ Missing (or too many) whitespaces (or blank lines)

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 41 / 63



Managing your project as a software

Linting in Python

• Mainly defined by two Python Enhancement Proposals (PEP):

▶ PEP 8: Style Guide for Python Code

▶ PEP 257: Docstring Conventions

• Main Python package: flake8

▶ flake8 itself does not implement checks but builds a strong foundation for a
plugin ecosystem.

▶ Popular plugins:
⋆ pyflakes: checks Python code for errors.

⋆ pycodestyle: checks Python code against some PEP 8 style conventions.

⋆ mccabe: checks McCabe complexity using Ned’s script.

⋆ pep8-naming: checks Python code against PEP 8 naming conventions.

⋆ flake8-docstrings: is an extension for pydocstyle to flake8.

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 42 / 63

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0257/
https://flake8.pycqa.org/en/stable/
https://pypi.org/project/pyflakes/
https://pypi.org/project/pycodestyle/
https://pypi.org/project/mccabe/
https://pypi.org/project/pep8-naming/
https://pypi.org/project/flake8-docstrings/
https://pypi.org/project/pydocstyle/


Managing your project as a software

Code style (in Python)

• Even when abiding by PEP 8 style conventions, there are still many
ways to write the same piece of code.

• Black: The uncompromising code formatter:

▶ Blackened code looks the same regardless of the project you’re reading.

▶ Formatting becomes transparent after a while and you can focus on the
content instead.

▶ Black makes code review faster by producing the smallest diffs possible.

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 43 / 63

https://black.readthedocs.io/en/stable/


Managing your project as a software

Testing

• Would you state a new theorem without giving its proof?

• Would you apply a theorem without checking if the hypotheses are
satisfied?

• Would you trust anyone’s code (including yours) without it being tested?

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 44 / 63



Managing your project as a software

Testing

• Would you state a new theorem without giving its proof?

• Would you apply a theorem without checking if the hypotheses are
satisfied?

• Would you trust anyone’s code (including yours) without it being tested?

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 44 / 63



Managing your project as a software

Testing

• Would you state a new theorem without giving its proof?

• Would you apply a theorem without checking if the hypotheses are
satisfied?

• Would you trust anyone’s code (including yours) without it being tested?

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 44 / 63



Managing your project as a software

Testing

Objective: Testing that your code works and does what it is supposed to
do.

• Unit testing: Testing individual modules of an application in isolation to
confirm that the code is doing things right.

• Integration testing: Checking if different submodules of your project are
working fine when combined together.

• Functional testing: Testing a functionality in the project (may interact
with dependencies) to confirm that the code is doing the right things.

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 45 / 63



Managing your project as a software

Testing in Python

• unittest: Python package from the standard library.

• nose: deprecated Python package.

• pytest: the most popular Python package (easier, more flexible).

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 46 / 63

https://docs.python.org/3/library/unittest.html
https://nose.readthedocs.io/en/latest/
https://docs.pytest.org/en/stable/


Managing your project as a software

Code coverage

• Definition: a measure used to describe the degree to which the source
code of a program is executed when a particular test suite is run.

• Common metric: percentage of lines that have been executed at least
once. Available at any level:

▶ in the whole module,

▶ in any submodule,

▶ in any file.

• Reliant on the report of the testing tool used to run the test suite.

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 47 / 63



Managing your project as a software

Code coverage in Python

• coverage: general tool (initially developed to be used with unittest).

• pytest-cov: plugin for pytest.

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 48 / 63

https://coverage.readthedocs.io/en/stable/
https://pytest-cov.readthedocs.io/en/stable/


Managing your project as a software

Code coverage (online)

• Reporting the code coverage results online has several upsides:

▶ Information easily available to anyone (no need to run a command)

▶ User-friendly report (sunburst graph, code coverage at any level, etc.)

▶ Can be included in the continuous integration pipeline (e.g., monitoring
the change in code coverage in a pull request)

• Available tools:

▶ Codecov

▶ Coveralls

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 49 / 63

https://about.codecov.io
https://coveralls.io


Managing your project as a software

Documentation

• A software (and more generally any source code) without its
corresponding documentation is almost useless.

• Key elements of any documentation:

▶ Installation instructions

▶ User guide

▶ API documentation

▶ Examples

• Other useful elements: getting started, tutorials, changelog, glossary,
developer guide, etc.

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 50 / 63



Managing your project as a software

Documentation in Python

• Sphinx: Python documentation generator

▶ Originally created for the Python documentation

▶ Expanded to other programming languages (C, PHP, Ruby, JavaScript, etc.)

▶ Many useful extensions, including:
⋆ sphinx.ext.autodoc: Include documentation from docstrings

⋆ sphinx.ext.autodoc: Generate autodoc summaries

⋆ sphinx.ext.viewcode: Add links to highlighted source code

⋆ sphinx.ext.doctest: Test snippets in the documentation

⋆ sphinx_gallery: Build an HTML gallery of examples from any set of Python
scripts

• MkDocs: project documentation with Markdown

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 51 / 63

https://www.sphinx-doc.org/en/master/
https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html
https://www.sphinx-doc.org/en/master/usage/extensions/autosummary.html
https://www.sphinx-doc.org/en/master/usage/extensions/viewcode.html
https://www.sphinx-doc.org/en/master/usage/extensions/doctest.html
https://sphinx-gallery.github.io/stable/index.html
https://www.mkdocs.org


Managing your project as a software

Documentation (online)

• A website dedicated to the documentation is much more user-friendly
than a PDF file with hundreds or even thousands of pages.

• ReadTheDocs: Simplify software documentation by automating building,
versioning, and hosting of your docs for you.

• GitHub Pages: Websites for you and your projects.

▶ Hosted directly from your GitHub repository.

▶ Just edit, push, and your changes are live.

• Automatically redirect to another website if you own a dedicated domain.

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 52 / 63

https://readthedocs.org
https://pages.github.com


Managing your project as a software

Continuous integration

• Rationale: Making sure that any version of the remote source code
always works.

• Content: linting, testing, code coverage, documentation, etc.

• Workflow: Before changing the remote source code:
1 Run the continuous integration locally.

2 Run the continuous integration remotely (several operating systems, several
versions of dependencies, etc.).

3 If successful, the changes can be merged.

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 53 / 63



Managing your project as a software

Continuous integration (online)

Many services available, all of them being free for open source projects (with
reasonable restrictions), including:

• Azure Pipelines

• GitHub workflows

• Travis CI

• CircleCI

• AppVeyor

• Jenkins

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 54 / 63

https://azure.microsoft.com/fr-fr/services/devops/pipelines/
https://docs.github.com/en/actions/using-workflows
https://travis-ci.org
https://circleci.com
https://www.appveyor.com
https://www.jenkins.io


pyts: A Python Package for Time Series Classification

Outline

1 Time series classification
Metric-based approaches
Feature-based approaches

2 Managing your project as a software

3 pyts: A Python Package for Time Series Classification

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 55 / 63



pyts: A Python Package for Time Series Classification

What is pyts?

• Python package dedicated to time series classification.

• Objective: Make working on time series classification easy:

▶ Data loading utilities, preprocessing tools, implementations of many
algorithms,

▶ Under a unified application programming interface,

▶ Compatible with scikit-learn tools such as cross-validation and
pipelines.

• Published in the Open Source Section of Journal of Machine Learning
Research in 2020 [FJ20].

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 56 / 63



pyts: A Python Package for Time Series Classification

Concrete example

Let’s see how the tools presented in the second
section are applied in this package.

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 57 / 63

https://github.com/johannfaouzi/pyts


pyts: A Python Package for Time Series Classification

Thanks

Thank you for your attention

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 58 / 63



pyts: A Python Package for Time Series Classification

References I

[Bag+15] Anthony Bagnall et al. “Time-Series Classification with COTE: The Collective of
Transformation-Based Ensembles”. In: IEEE Transactions on Knowledge and Data
Engineering 27.9 (Sept. 2015), pp. 2522–2535.

[Bag+20] Anthony Bagnall et al. “On the Usage and Performance of the Hierarchical Vote
Collective of Transformation-Based Ensembles Version 1.0 (HIVE-COTE v1.0)”. In:
Advanced Analytics and Learning on Temporal Data. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2020, pp. 3–18.

[BRT13] Mustafa Gokce Baydogan, George Runger, and Eugene Tuv. “A Bag-of-Features
Framework to Classify Time Series”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 35.11 (Nov. 2013), pp. 2796–2802.

[CB17] Marco Cuturi and Mathieu Blondel. “Soft-DTW: a Differentiable Loss Function for
Time-Series”. In: Proceedings of the 34th International Conference on International
Conference on Machine Learning. PMLR. 2017, pp. 894–903.

[Cut11] Marco Cuturi. “Fast Global Alignment Kernels”. In: Proceedings of the 28th
International Conference on International Conference on Machine Learning. June
2011, pp. 929–936.

[Den+13] Houtao Deng et al. “A time series forest for classification and feature extraction”. In:
Information Sciences 239 (Aug. 2013), pp. 142–153.

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 59 / 63



pyts: A Python Package for Time Series Classification

References II

[DPW20] Angus Dempster, François Petitjean, and Geoffrey I. Webb. “ROCKET: exceptionally
fast and accurate time series classification using random convolutional kernels”. In:
Data Mining and Knowledge Discovery 34.5 (Sept. 2020), pp. 1454–1495.

[DSW21] Angus Dempster, Daniel F. Schmidt, and Geoffrey I. Webb. “MiniRocket: A Very Fast
(Almost) Deterministic Transform for Time Series Classification”. In: Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. Aug.
2021, pp. 248–257.

[EKR87] J.-P. Eckmann, S. Oliffson Kamphorst, and D. Ruelle. “Recurrence Plots of Dynamical
Systems”. In: Europhysics Letters (EPL) 4.9 (Nov. 1987), pp. 973–977.

[FJ20] Johann Faouzi and Hicham Janati. “pyts: A Python Package for Time Series
Classification”. In: Journal of Machine Learning Research 21.46 (2020), pp. 1–6.

[Gra+14] Josif Grabocka et al. “Learning Time-Series Shapelets”. In: Proceedings of the 20th
ACM SIGKDD international conference on Knowledge discovery and data mining.
2014, pp. 392–401.

[Ism+20] Hassan Ismail Fawaz et al. “InceptionTime: Finding AlexNet for time series
classification”. In: Data Mining and Knowledge Discovery 34.6 (Nov. 2020),
pp. 1936–1962.

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 60 / 63



pyts: A Python Package for Time Series Classification

References III

[Ita75] F. Itakura. “Minimum prediction residual principle applied to speech recognition”. In:
IEEE Transactions on Acoustics, Speech, and Signal Processing 23.1 (Feb. 1975),
pp. 67–72.

[Lin+07] Jessica Lin et al. “Experiencing SAX: a novel symbolic representation of time series”.
In: Data Mining and Knowledge Discovery 15.2 (Oct. 2007), pp. 107–144.

[Lin+12] Jason Lines et al. “A Shapelet Transform for Time Series Classification”. In:
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 2012, pp. 289–297.

[LKL12] Jessica Lin, Rohan Khade, and Yuan Li. “Rotation-invariant similarity in time series
using bag-of-patterns representation”. In: Journal of Intelligent Information Systems
39.2 (Oct. 2012), pp. 287–315.

[LTB18] Jason Lines, Sarah Taylor, and Anthony Bagnall. “Time Series Classification with
HIVE-COTE: The Hierarchical Vote Collective of Transformation-Based Ensembles”.
In: ACM Transactions on Knowledge Discovery from Data 12.5 (July 2018),
52:1–52:35.

[Luc+19] Benjamin Lucas et al. “Proximity Forest: an effective and scalable distance-based
classifier for time series”. In: Data Mining and Knowledge Discovery 33.3 (2019),
pp. 607–635.

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 61 / 63



pyts: A Python Package for Time Series Classification

References IV

[Mid+21] Matthew Middlehurst et al. “HIVE-COTE 2.0: a new meta ensemble for time series
classification”. In: arXiv:2104.07551 [cs] (Apr. 2021).

[MMK06] Meinard Müller, Henning Mattes, and Frank Kurth. “An efficient multiscale approach
to audio synchronization”. In: In Proceedings of the 6th International Conference on
Music Information Retrieval. 2006, pp. 192–197.

[SC07] Stan Salvador and Philip Chan. “Toward Accurate Dynamic Time Warping in Linear
Time and Space”. In: Intelligent Data Analysis 11.5 (Oct. 2007), pp. 561–580.

[SC78] H. Sakoe and S. Chiba. “Dynamic programming algorithm optimization for spoken
word recognition”. In: IEEE Transactions on Acoustics, Speech, and Signal
Processing 26.1 (Feb. 1978), pp. 43–49.

[Sch15] Patrick Schäfer. “The BOSS is concerned with time series classification in the
presence of noise”. In: Data Mining and Knowledge Discovery 29.6 (Nov. 2015),
pp. 1505–1530.

[Sch16] Patrick Schäfer. “Scalable time series classification”. In: Data Mining and Knowledge
Discovery 30.5 (Sept. 2016), pp. 1273–1298.

[SH12] Patrick Schäfer and Mikael Högqvist. “SFA: a symbolic fourier approximation and
index for similarity search in high dimensional datasets”. In: Proceedings of the 15th
International Conference on Extending Database Technology - EDBT ’12. Berlin,
Germany: ACM Press, 2012, p. 516.

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 62 / 63



pyts: A Python Package for Time Series Classification

References V

[Shi+20] Ahmed Shifaz et al. “TS-CHIEF: a scalable and accurate forest algorithm for time
series classification”. In: Data Mining and Knowledge Discovery 34.3 (May 2020),
pp. 742–775.

[SL17] Patrick Schäfer and Ulf Leser. “Fast and Accurate Time Series Classification with
WEASEL”. In: Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management - CIKM ’17 (2017), pp. 637–646.

[SM13] P. Senin and S. Malinchik. “SAX-VSM: Interpretable Time Series Classification Using
SAX and Vector Space Model”. In: 2013 IEEE 13th International Conference on Data
Mining. Dec. 2013, pp. 1175–1180.

[Tan+21] Chang Wei Tan et al. “MultiRocket: Effective summary statistics for convolutional
outputs in time series classification”. In: ArXiv (2021).

[WO15] Zhiguang Wang and Tim Oates. “Imaging Time-series to Improve Classification and
Imputation”. In: Proceedings of the 24th International Conference on Artificial
Intelligence. IJCAI’15. AAAI Press, 2015, pp. 3939–3945.

Johann Faouzi Time Series Classification in Python S2A seminar, 03/17/2022 63 / 63


	Time series classification
	Metric-based approaches
	Feature-based approaches

	Managing your project as a software
	pyts: A Python Package for Time Series Classification
	References

